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A B S T R A C T

This review article aims to present the evaluation of research progress in the field of adsorption, identified based 
on 35,245 articles from 2003–2023 utilizing the Scopus database via bibliometric analysis to determine the 
countries, most active journals, and keyword relationships that indicate knowledge-exchange and collaboration 
pathways. The role of density functional theory and the second-order (Y) of adsorption modelling such as 
response surface methodology and artificial neural networks from input items (adsorbent concentration xi, 
adsorbent type xi2, etc.) has become an option for designing the optimization of specific pollutant degradation as 
output due to its controllability in optimized experimental conditions for maximum adsorption efficiency. 
Meanwhile, the development of isotherm models from Freundlich in 1906 to Liu in 2018 shows that adsorption 
intensity affects the kf by changing the thermodynamic conditions as a consequence. To summarize, the opti-
mization of adsorption properties through various methods and models has led to significant research on carbon 
and activated carbon (AC) for water remediation, with a trend towards using AC with semiconductors and 
exploring multifunctional applications. Additionally, carbon (black, fiber, nanotube form) and AC are discussed 
as materials that have been employed in the fields of civil engineering, energy storage, biomedicine, and sensors 
due to their conductivity, specific surface area, and detoxification properties. Finally, this review is beneficial for 
researchers focused on finding the scientific justification and development of carbon and AC as promising ad-
sorbents.

1. Introduction

The challenge of clean water availability is one that must be 
addressed immediately since it significantly impacts the health of 
humans [1,2], as well as environmental sustainability. In terms of 
developing methods for separation and purification, considerable focus 
has been placed on the adsorption process as a result of its uncompli-
cated, cost-effective, and environmentally friendly characteristics [3,4]. 
In principle, adsorption involves the increased concentration of a sub-
stance at the condensed layer–liquid/gas interface resulting from the 
surface force operation [5]. Carbon and activated carbon (AC) have been 

widely used as adsorbents with promising performance, and have even 
been investigated as a capacitor material [6], for renewable energy 
conversion [7], and as ultra-small nanoparticles [8]. Although the role 
of carbon is not as significant as AC in its implementation, its presence is 
widely employed as doping in an effort to improve the properties of the 
involved semiconductors. This is not separated from the characteristics 
of a large surface area that favors sufficient pore distribution and the 
provision of active sites that can act as traps [9]. Based on their source, 
adsorbents can be categorized into synthetic and natural materials. Clay 
minerals and biological biomass are presented as natural sources, while 
nanoparticles and metal ions reported to be utilized as adsorbents are 
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included as-synthesized materials [10].
This review article uses the bibliometric analysis method by utilizing 

the Scopus database to collect data, which will not only provide objec-
tive and quantitative information with which to evaluate the reported 
scientific outputs, impacts, and trends but will also provide an overview 
of the scientific literature [11], as well as specifying the countries, most 
active journals, and keyword relationships that indicate the pathways of 
knowledge exchange and collaboration. Compared to previous related 
works that only highlighted carbon dots in the adsorption of pharma-
ceuticals [12], the ability of biochar in phosphate degradation [13], and 
also extends the scope to include all types of carbon and AC for 
adsorption purposes. Our results not only support previous findings but 
also introduce a new dimension to the explanation of how carbons and 
ACs perform in photocatalysis.

In the bibliometric analysis, 35,245 articles were found to have re-
ported research results corresponding to the keywords (“carbon”, 
“activated carbon”, and “adsorption”) in the 2003–2023 period. Carbon 
and AC were chosen because they are recognized as one of the most 
efficient adsorbents due to their outstanding characteristics, such as a 
highly developed porous structure, diverse oxygen functional groups, 
excellent thermal and mechanical stability, high adsorption capacity, 
and large surface area [14]. However, when the keyword “photo-
catalyst” was included, the number of articles decreased significantly to 
280. This indicates that although several types of adsorbents with 
various performances have been reported, few articles focused on 
including in-depth explanations of the physical and chemical phenom-
ena involved in the degradation process. In fact, a discussion of the 
equilibrium conditions, the adsorption capacity of adsorbents, iso-
therms, and kinetic processes is vital to achieving optimization so that 
the applied design can be obtained [15,16].

This review article is organized as follows: In Section 1, we reviewed 
the basic theory and background relevant to adsorption and adsorbent 
types such as AC and charcoal. Section 2 describes bibliometric analysis 
as a method of searching data on the application of AC as an adsorbent. 
Section 3 discusses various activation methods of carbon and their ap-
plications in various research fields. Finally, Section 4 offers conclu-
sions, implications, and recommendations for future research to explore 
its applications in civil engineering, energy storage, biomedical fields, 
and electronics. Additionally, artificial neural networks and the 
response surface methodology present themselves as novel modeling 
that can optimize the experimental conditions for maximum adsorption 
efficiency [17]. Indeed, the combined use of both empowers researchers 
to optimize and develop predictive models [18]. Thus, identifying sig-
nificant factors and their interactions, as well as developing mathe-
matical models to predict the response, represent important advances in 
the effort to improve the adsorption process.

1.1. Adsorption

The physicochemical technique that dissolves molecules in water 

that are chemically and physically bound to the surface of the adsorbent 
as shown in Fig. 1 is referred to as the adsorption phenomenon. In terms 
of effectiveness, adsorption technology is the optimum procedure 
because it contains degradation steps such as dye diffusion/convection, 
and dye molecules’ diffusion (i) via the diffusion boundary layer, (ii) 
from the surface of the adsorbent material’s interior, and (iii) from the 
surface to the adsorbent material’s interior [19,20]. Physisorption is the 
process of adsorbate attaching to a surface through van der Waals forces 
that occurs at low temperatures and is influenced by factors such as 
molecular size and surface area [21]. Chemisorption, on the other hand, 
involves chemical bonds forming between the adsorbate and adsorbent 
upon the formation of a single layer and is difficult to reverse. Upon the 
absorption of light energy, the photocatalyst generates electron-hole 
pairs [22].

These charge carriers are crucial in terms of promoting photo-
catalytic reactions, triggering surface diffusion events, and increasing 
adsorption capacity with the consequence of making the adsorbent 
better at adsorbing substances. These charge carriers have importance in 
terms of driving the photocatalytic reaction to trigger surface diffusion 
events. The movement of adsorbates on the material surface is moti-
vated by surface diffusion, where adsorbates are reactant molecules that 
have adsorbed onto the catalyst surface [23]. The dye molecule type also 
determines the success of the adsorption process, which can be in the 
anionic–cationic range, where these two charge differences affect the 
hydrophobic and electrostatic interactions, respectively [24]. In addi-
tion, in this review, we use the following variables, which will be dis-
cussed below in the paper:

Variable information.
Y= the predicted response.
xi, xj= the input variables.
k, ε = the number of variables and residual.
β0, βi= the constant term and linear coefficient.
βij, βii= the interaction and quadratic term coefficient.
q= the amount of adsorbate adsorbed/mass of adsorbent at equi-

librium (mg).
Qmax= the maximum adsorption capacity for monolayer coverage.
KL, KF= the Langmuir and Freundlich constants related to the 

adsorption energy.
[A], [S], [A − S] = the concentration of adsorbate, surface, and the 

reaction product.
qe, qmax = the fraction of the filled sites at equilibrium, and the 

maximum capacity of adsorption (mg/g).
Ce= the adsorbates’ equilibrium concentration (mg/L).
kL, RL= the equilibrium constant and separation factor for the 

Langmuir model.
k1, k2= the rate constant for adsorption and desorption.
C0= the adsorbate initial concentration.
kF= the equilibrium constant for the Freundlich model.
KT , b,T= the Temkin isotherm, Temkin constant, and absolute tem-

perature.

Fig. 1. The adsorption mechanism on the surface of AC.
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11/n, R= the Freundlich exponent and regression.
KH, nH= the Halsey isotherm constant, and the parameters of the 

linearized equation.
KJ, AHJ= the Jovanovich constant (L/g), and the Harkin–Jura con-

stant (L/g).
qem, qt= the amount of metal adsorbed at equilibrium (mg/g), and 

time (t).
k1,K1= the pseudo constant rate, and the reaction rate.
qmax, qm, Ke= the maximum adsorbate uptake, maximum capacity 

(mg/g), and Elovich constant.
Kliu,nliu= the Liu constant and its exponents’ model.
Kint, Cint= the intra-particle diffusion rate constant (min− 1), and its 

intercept.

1.2. Synthetic and natural adsorbents

Determining the type of adsorbent can be classified based on its or-
igins. Synthetic and natural are the two groups that can be used to 
separate them as shown in Fig. 2. Natural materials can be represented 
by microorganisms [25], olive stone, and clays [26], while synthetic 
materials are represented by metal ion nanoparticles [27]. The classi-
fication of natural and synthetic adsorbents will provide an overview of 
the respective advantages and disadvantages. Natural adsorbent mate-
rials are of course renewable, sustainable, and low cost, thus rendering 
them an environmentally friendly option, but it should be noted that 
they may have limited stability under certain conditions, especially in 
harsh environments with extreme pH. Synthetic adsorbent materials 
have the advantage of specific adsorption properties that are useful for 
targeting specific pollutants.

Generally, synthetic adsorbents show more consistent performance 
than natural materials as their properties can be standardized, resulting 
in more predictable adsorption. Because synthetic adsorbent materials 
are produced through chemical and physical processes, some may lack 
biocompatibility, making them less suited for interaction with biological 
systems. The use of a high concentration of metallic materials is also a 
residual cause that can be a risk in its application.

Therefore, a solution can be achieved in the form of composite ma-
terials in order to avoid the limitations of synthetic and natural materials 

in their utilization as adsorbents. Combining synthetic and natural ma-
terials can be modeled as a composite. Therefore, the presence of com-
posite materials is claimed to overcome the shortcomings of such 
materials that include slow adsorbents, potential contaminants, and 
limited biocompatibility. Increased adsorption capacity and selectivity, 
and improved stability are the targets that can be achieved from the 
composite process. The CaO/C combination provides an opportunity to 
increase the adsorption capacity as a result of the natural materials’ high 
surface area with specific functional groups of synthetic materials such 
as CaO [28]. The formation of specific sites on synthetic materials is 
enhanced by the surface area of AC, and the binding process of adsor-
bents through the chemical process by TiO2 coordination in the chem-
isorption process, thus customizing adsorbents for specific target 
molecules by combining different binding mechanisms to increase their 
effectiveness [29]. To achieve limited biocompatibility, the combination 
of Fe3O4/AC/TiO2 as a nanocatalyst has also been reported in stable 
degradation and reuse studies [30]. Utilizing the durability of synthetic 
materials along with the inherent biodegradability of natural materials 
will increase reuse as the materials have a stable response, with elec-
trostatic adsorption the process responsible for this improvement.

1.3. Activated carbon

On the basis of its unique properties, AC has become an option in air 
purification, desalination, and the treatment of water and wastewater, 
as a result of its porous nature with up to 90 % of its surface area [31]. 
Many functional groups like phenol, carboxyl, and carbonyl have re-
sponsibility for the outer surface of carbon to improve its adsorption 
performance [32], because they act as a molecular binder for pollutants, 
as shown in Fig. 3.

Carbonyl: In organic terms, carbonyl refers to a carbon atom bonded 
in duplicate to an oxygen atom (C––O). The carbonyl group has the 
structure R − C = O, where R represents an organic substituent. 
Carbonyl can occur through oxidation and reduction reactions, which 
can occur in biological molecules and polymerization processes. The 
electronegativity difference between carbon and oxygen causes 
carbonyl (electrophilic) groups to have polar properties that are useful 
for facilitating nucleophilic sites on adsorbates.

Fig. 2. Advantages and limitations of different forms of Synthetic and natural adsorbents.
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Carboxyl: Carbon atoms consisting of carbonyl groups (C = O) and 
hydroxyl groups (-OH), which in general can be written as (-COOH), are 
referred to as carboxyl groups. Carboxyl groups can be formed through 
oxidation [R − CH2 − OH→R − COOH], hydrolysis [R − CN→R − COOH], 
and oxidation [R − CHO→R − COOH] reactions. The presence of 
hydrogen bonds in these groups allows for affinity interactions of the 
adsorbent with the adsorbate and is supported by polar molecules, thus 
improving the adsorption performance.

Methyl phenol: Compounds with a hydroxyl group attached to an 
aromatic ring, where the methyl group (CH3) is attached to a phenolic or 
cresol ring. Cresol can generally be obtained from synthesis, biological 
production, and industrial processes. Because it has aromatic rings and a 
hydroxyl group, the formation of a stable surface can occur during the 
adsorption process, thereby enhancing the binding of certain adsorbates.

1.4. Charcoal

Charcoal is a highly porous form of carbon with an impressive sur-
face area, known for its outstanding adsorption capabilities. Its porous 
structure offers numerous adsorption sites, thus enabling charcoal to 
effectively remove a wide variety of impurities and contaminants from 
liquids and gases. Charcoal in particular, is a type of charcoal that has 
undergone chemical treatment to enhance its adsorption capabilities. 
Activation is achievable through a range of techniques that include 
chemical [33] or physical methods [34]: the former entails treating it 
with pH< 7 chemicals, while the latter involves subjecting the charcoal 
to high temperatures. The result of the activation process creates a pore 
network and increases the charcoal’s surface area in order to provide 
more sites for the adsorption process. Physical adsorption is one of the 
mechanisms that will occur between the adsorbate molecules and the 
adsorbent surface as a result of charcoal’s porous structure [35,36].

1.5. Biochar

Charcoal that results from the pyrolysis of organic materials (e.g. 
agricultural residue, bamboo, banana peel, wood waste, or other 
biomass) is the material and process for obtaining biochar. Based on its 
high surface area and porous structure, biochar has gained attention for 
its potential in various applications, including water quality improve-
ment [37]. It is pertinent that biochar’s performance as an adsorbent is 
dependent on various factors, including the feedstock type and the 
properties of the specific contaminants being targeted. Fortunately, the 
properties of biochar can be modified through activation or function-
alization to tailor its adsorption capabilities.

2. Bibliometric analysis of AC as an adsorbent

2.1. Rationale for the bibliometric analysis

Some researchers may argue that the bibliometric analysis approach 
is simply an observation of the presentation of research reports [38]. 
However, review analysis via bibliometric measures and a search engine 
that relies on the Scopus database (see Fig. 4) is highly efficient at 
determining the importance of a research focus in terms of the number 

and growth of articles and citations (see Fig. 5).
The data mining process commenced with keywords and resulted in 

35,245 articles. This indicates that research based on AC has its own 
base as a waste absorber. However, when the word photocatalyst was 
included, there was a reduction in the number of articles to 285, which 
can be related to the procedure of utilizing and activating carbon. 
Therefore, an opportunity remains to expand the scope of implementa-
tion. The data from the article mining results were then clustered to 
avoid the accumulation of the same data, with OpenRefine eliminating 5 
articles and thus reducing the total number of articles to 280. The 
findings obtained from the data mining and analysis process are the most 
active countries, publishers, and journals with the highest number of 
articles and citations, as well as the keyword relationships. Quantitative 
analysis of the scientific literature, including the publications, citations, 
and collaborations, revealed that Elsevier and journals that focus on the 
scope of environmental concerns dominate due to the tendency of au-
thors to present their views and solutions for conservation.

It should be noted that most data were sourced from Elsevier B.V. 
and Elsevier Ltd, a leading academic publisher that demonstrates the 
reliability and excellence of the publication, making it a natural choice 
for many authors and citation decisions [39]. The sizable number of 
published articles (n = 101) indicates a noteworthy collection of works 
related to the topics. The articles have had a significant impact on the 
academic community, as evidenced by the 3150 citations that have been 
received.

The journal with the highest number of citations (n = 1253) and the 
most articles suggests that the publication in question is respected and 
well-known for its significant research publications on carbon, AC, and 
adsorption. The sizable number of citations indicates that the published 
articles make an important impact and are often referred to by other 
researchers. However, the second highest journal, despite having fewer 
articles than the highest-ranked journal, still has a considerable number 
of citations (n = 455). Based on this, it appears that the articles pub-
lished in this journal received a large number of citations and made 
noteworthy contributions to the field. The ratio of citations to articles 
reflects the impact and is evidence of whether the published research is 
valued by the academic community.

2.2. The importance of mapping research

The need to map research focuses can relate to potential areas for 
further exploration. Research trends can be viewed in greater depth, and 
the tendency of author affiliations to focus on these areas can reveal 
patterns of international collaboration, indicating global interest and 
engagement specifically for carbon, AC, and its adsorption capacity. One 
of the limitations of bibliometric reviews that rely on citation and 
document counts is the temporal nature of the analysis, whereby the 
temporal evolution of publications can reveal the growth of interest in a 

Fig. 3. The chemical structure for the carbonyl group, carboxyl group, and 
methyl phenol as a binding site.

Fig. 4. The data mining process.
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topic and identify periods of increased interest, but the numbers are 
constantly evolving. Therefore, the information mined and processed at 
one point in time will shift if the data mining is conducted in the future. 
Therefore, information on research development linked to carbon use 
and AC as wastewater catalysts will continue to develop according to the 
trend of researchers and the need for environmental preservation. 
Moreover, when the growth of carbon and AC-related research weakens, 
it will be a sign that novel materials have been discovered that are more 
suitable for wastewater decomposition applications. Therefore, it is 
useful to create a science map to recognize the transformation of 
research.

2.3. Collaboration, and networking keywords

One of the drivers for investigation and participation in the com-
munity is to collaborate at the international level in order to facilitate an 
exchange of knowledge between researchers. Collaboration between 

disciplines is also an important factor so that variations, innovations, 
and solutions to wastewater problems can be resolved, especially by 
using carbon and AC as adsorbents.

The country activity revealed that China and India have the largest 
spheres, indicating their activity in publications in this field (see Fig. 6). 
Meanwhile, the connecting lines between countries indicate a cooper-
ative relationship in the form of joint publications between authors from 
related countries.

3. Activation method

Activation is indispensable in improving the adsorption performance 
of carbon adsorbents. These improvements include increased surface 
area [40,41], chemical properties [42,43], pore structure [44,45], 
adsorption capacity [46,47], and surface modification [48,49]. Table 1
shows the comparison of activation methods of several AC along with 
the degradation performance of various adsorbates and their adsorption 

Fig. 5. (a) Publisher and (b) journal based on their count and cited status.
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capacity.

3.1. Physical activation

The principle of porous structure formation for natural materials has 
common stages such as carbonization, temperature ramp-up, and acti-
vation duration. The carbonization of raw materials, which involves the 
decomposition of complex organic molecules into carbon-rich struc-
tures, is generally carried out at temperatures in the 600–900 ℃ range. 
Similar to the carbonization process, temperature ramp-up is a higher 
heating to > 950 ℃, where the application of temperature must be 
controlled to avoid thermal shock. Structural transformation, and the 
formation of micro- and mesopores, are processes that the material will 
undergo due to the removal of complex organic molecules so that 
components such as water, gas, and tar separate and ultimately leave the 

element carbon [70]. In certain cases, a porous structure formation may 
still be maximized by selecting the appropriate activation duration. 
Therefore, the length of the activation duration is actually highly 
dependent on the source material being activated. However, it should be 
noted that a long activation duration will generate low adsorption ca-
pacity and require high energy consumption [71].

3.2. Chemical activation

Chemical activation can be deemed as a complementary step to 
physical activation. After obtaining a porous surface structure, the 
porosity level is the next concern. Increasing the porosity properties of 
the material can be obtained through acid solutions to neutralize any 
remaining alkaline substances. Phosphoric acid [72], potassium car-
bonate [73], sodium hydroxide, and zinc chloride [74] are activators 

Fig. 6. The countries with a high concern for water pollution, and the keyword network.

Table 1 
Performance of various activated carbons.

No AC Source Performance Adsorbate Activation Method Ref

Ads. capacity (mg/g) Degradation (%)

1 Lignin 1800 99.82 BG, α-MB, CV, MY, β-MB, and AF Chemical [50]
2 Raphanus seeds 10 99.4 MB Physical [51]
3 Biomass 330 95.87 Pazopanib Chemical [52]
4 Banana Peel 6 90 Pb and Cd Pyrolysis Carbonization [53]
5 Peanut Shells 303.03 95 MB and Pb(II) Chemical [54]
6 Sawdust 10 99.69 MO and MR Chemical [55].
7 Durian Skin 50 91.49 MB Chemical [56]
8 Sunflower Stem 365.81 90 Phenol and Bisphenol A (BPA) Chemical [57]
9 Rice Straw 300 95 MB Synthesized Activation [58]
10 Goat-Weed 100 93 Hospital Wastewater Pyrolysis Chemical [59]
11 Biomass 1096.31 99.58 Glycerol Chemical [60]
12 Waste Newspaper 651 89.6 MB and CR Chemical [61]
13 Biomass 916.3 93.2 Almotriptan and Paracetamol Chemical [62]
14 Ice Cream Wastewater 588.23 98.6 RhB and AR97 Physical [63]
15 Coconut Shell 15,827 98 Oils and Organic Solvents Chemical [64]
16 Musa paradisiaca Peel 20 98.23 Hexachlorocyclohexanes Chemical [65]
17 Biomass 6 97.6 Tetracycline Chemical [66]
18 Commercial 5.056 40 Ammonia Chemical [67]
19 Pinewood 25 95 Diclofenac and Ciprofloxacin Chemical [68]
20 Sawdust 512 73 Textile Dyeing Industry (direct blue, green, and orange) Chemical [69]
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that have been applied to activate AC.

3.3. Factors influencing the degradation performance

Factors such as the temperature, adsorbent dosage, pH, contact time, 
initial pollutant concentration [75,76], and wavelength matching are 
important variables that are often reported as determining the quality of 
a study related to photocatalysts [77], and are of course associated with 
the produced AC’s quality and the pollutant type targeted.

Wavelength matching warrants being one of the determining factors 
for the success of adsorption processes that utilize the light spectrum. 
Photocatalyst reactions such as AC have been widely reported as active 
in the UV region, and clearly activeness in long spectral ranges will 
provide greater opportunities for the generation of electron and hole 
pairs [78]. The suitability of the pH value also cannot be ignored in the 
photocatalysis process, since each adsorbent has a suitable pH of ~7.5, 
~6, and ~4 that makes the degradation process optimal [77,79]. The 
contact time refers to the length of the adsorbate–adsorbent interaction 
period [80]. In terms of the interaction behavior, greater duration allows 
more impurity molecules to interact with the photocatalyst, leading to 
increased degradation. However, the reversal process in a condition can 
be a matter of concern as results of increasing and decreasing percent-
ages of degradation per length of time have been widely reported [81]. A 
suitable interaction duration can achieve a balance between the 
adsorption of impurities on the photocatalyst surface, and their subse-
quent degradation.

Photocatalysts can change over time, which affects their efficiency in 
degrading impurities. The pollutants’ initial concentration and the ad-
sorbent’s mass are two factors that can maintain the stability of their 
interaction, so that effective degradation can be obtained. Increasing the 
amount of the initial pollutant concentration as an adsorbate source will 
increase the adsorption capacity until the process reaches saturation; 
otherwise, a small amount of dye can cause interaction restrictions, 
resulting in repeated reactions [82]. Meanwhile, adsorbate removal is 
raised through an increased adsorbent dosage as it enhances the prob-
ability of surface adsorption sites [83]. Therefore, the dosing factor is 
also a concern for researchers seeking favorable research outcomes in 
this field.

The stability of carbon and AC is an important aspect in various 
applications. Studies have shown that biomass-derived AC exhibits 
excellent stability and regeneration ability, rendering it suitable as an 
adsorbent [84]. In addition, the use of natural waste materials in the 
manufacture of carbon adsorbents and AC not only improves their sta-
bility but also contributes to environmental sustainability [85]. Overall, 
carbon and AC adsorbent materials show stability in the effectiveness 
and longevity of adsorbents, indicating their versatility in various in-
dustrial applications.

3.4. Adsorption modeling and optimization

3.4.1. Response surface methodology
The response surface methodology (RSM) is a mathematical and 

statistical technique for designing experiments to optimize processes in 
terms of interacting variables and evaluating the responses to optimize 
the outcome information from a system. In the context of adsorption 
modeling and optimization, RSM is applied using various factors such as 
the adsorbate concentration, adsorbent material type, and interaction 
duration so that the role of these factors can be systematically explored 
[86]. In its implementation, there are two variables used: independent 
and dependent. The second-order polynomial is a mathematical model 
that fits the experimental design data and follows the following 
equation: 

Y = β0 +
∑k

i=1
βixi +

∑k

i=1
βiix2

i +
∑k− 1

i=1

∑k

j=2
βijxjxi + ε (1) 

Design–Expert is software that can be employed to perform the RSM 
model. The input variables can be adsorbent, contact time, initial dye 
concentration, and pH, while the adsorption efficiency is the target 
output [87].

The RSM approach can be updated with an artificial neural network 
(ANN) approach to model cationic dye removal by adsorption. As re-
ported by Ozcelik et al., the application of RSM was utilized to enable the 
evaluation of the process via four controllable operating parameters 
[88]. With the inputs of adsorbent dosage (0.1–0.5 g), contact time 
(10–90 min), initial dye concentration (50–150 mg/L), and pH (3− 9), a 
regression model (R = 0.9714) was obtained indicating that the 
regression was satisfactory and thus represented a promising model.

3.4.2. Artificial neural network
ANNs are utilized for classification, optimization pattern recogni-

tion, and regression tasks by learning from data and utilizing compu-
tational models inspired by the functioning of the human brain. Through 
the use of components from statistical learning algorithms that are based 
on neuronal systems, ANNs can be developed into multi-layer percep-
tron ratification ANNs (MLP-ANNs), the role of which in the context of 
adsorption modeling and optimization is capturing the relationships of 
complexity within the input variables that affect adsorption perfor-
mance and the response variables, such as efficiency (see Fig. 7). ANNs 
are often the modeling of choice due to their high adaptability to system 
changes, as they can continuously learn while new data become avail-
able, making them suitable for applications where adsorption processes 
may evolve over time [89]. For improvement, the normalization of the 
input data for ANN models typically involves converting the dataset into 
a standard scale with a range of [0 1], thus requiring several three-part 
components that are organized into training, testing, and validation 
datasets [90].

3.4.3. The role of density functional theory in the adsorption process
Prior to the development of density functional theory (DFT) by Kohn 

and Sham, scientists relied on the Schrödinger equation to study elec-
trons. DFT has gained popularity in material design thanks to its ability 
to handle interacting electrons and account for certain corrections in the 
material [91]. Fig. 8 illustrates the development of the time-dependent 
DFT (TDDFT) approach to solving complex problems involving multiple 
particles, which eventually led to the widespread use of DFT [92,93]. 
This discussion explores how the Schrödinger equation has been 
employed in materials design, while also highlighting the importance of 
certain quantum physics principles in running simulations that aid 
material development, especially in adsorbents and fields such as drug 
delivery [94,95], photocatalysts [96,97], energy storage [98,99], and 
spacecraft coatings [100].

The important role of DFT in understanding the performance of ad-
sorbents such as carbon and AC can be divided into two parts of the 
mechanism: simulating adsorption, and designing and optimizing 
adsorbents.

Fig. 7. RSM and ANN principles to obtain adsorption performance.

H. Heryanto et al.                                                                                                                                                                                                                              



Desalination and Water Treatment 320 (2024) 100758

8

3.4.3.1. Simulating adsorption. Wei et al. [101] reported a type of AC 
(ENAC) by treating macroalgae (Enteromorpha clathrate) with sodium 
hydroxide (NaOH). The new material has a very large surface area of 
1238,491 m2 per gram, as well as a significant total pore volume of 
0.6823 cm3 per gram, with an average pore size of 2.2038 nm. The re-
searchers conducted adsorption modeling, thermodynamics, and DFT 
simulations of tetracycline on mesopores, which showed electrostatic 
interactions, π-π interactions, and hydrogen bonding between the 
adsorbent and pollutants. Their results confirmed that the fabricated 
ENAC has promising application prospects in removing antibiotics from 
aqueous solutions, and their simulations were conditioned with all en-
ergy information (electronic energy and Gibbs free energy) corrected to 
zero-point energy [102].

3.4.3.2. Designing and optimizing. The combination of DFT and molec-
ular dynamic simulations has been reported as a powerful method and 
demonstrated in the study of SO2 and CO2 adsorption on graphite (111) 
surface in an aqueous medium [103]. The description included the 
overall electronic structure of the material with the energies of the 
highest occupied and lowest unoccupied molecular orbitals, the energy 
gap between them, hardness, softness, electron transfer, and electro-
negativity. The calculation strategy was performed with the Gaussian 
09 W program package employed for DFT calculations, while the mo-
lecular dynamic chemical descriptor was calculated via the adsorption 
tracer module (Accelrys, San Diego, CA, USA) implemented in Material 
Studio 8.0, which is distributed by the BIOVIA community and used to 
build substrate systems [104].

3.5. Isotherm models

The mathematical representation between adsorbed adsorbate and 
the adsorbate’s equilibrium concentration in the fluid phase is isotherm 
modeling, which helps characterize the adsorption behavior because it 
understands how adsorbate molecules interact with the adsorbent sur-
face. Furthermore, it measures the maximum adsorption capacity and 
adsorbent as it provides the mass adsorbed or the mass/volume of 
adsorbent adsorbed at equilibrium conditions.

3.5.1. Two parameter isotherm model

3.5.1.1. Langmuir model. Introduced in 1918 by Irving Langmuir, the 
Langmuir model assumes that adsorption occurs on a homogeneous 
surface with a finite distribution of identical, non-interactive adsorption 
sites. Since this model describes a chemisorption event, the rate of 
adsorption equals the desorption rate: q = Qmax .C

1+K.C. The adsorption rate 
(k1[A][S]) and desorption rate (k2[A − S]) change according to the 
function of qe, so that the equations become k1Ce(1 − q) and k2(qe), 
respectively, along with the development of nonlinear and linear 
Langmuir models that can be obtained by entering the qmax variables 
[105]: 

qe =
qmaxkLCe

1 + kLCe
for nonlinear models (2) 

Ce

qe
=

Ce

qmax
+

1
qmaxkL

for linear models (3) 

where kL =
qe

(1− qe)Ce
, and thus it is possible to express the adsorption 

capacity on the surface through the Langmuir splitting factor, which is 
defined as [106]: 

RL =
1

1 + KLC0
(4) 

The characteristics of the adsorption process can be briefly obtained 
through the following conditions: 

(RL > 1)indicatesunfavorable adsorption, if(RL

= 1)indicateslinear adsorption (5) 

(0 < RL < 1)indicatesfavorable adsorption, ifRL

= 0indicatesirreversible adsorption (6) 

Freundlich model: In 1906, Herbert Freundlich proposed this model 
for consideration. When compared to the Langmuir model, the 
Freundlich model is not based on monolayer adsorption occurring on a 
completely uniform surface. Rather, this model allows diverse surfaces 
to engage in multilayer adsorption. It should be noted that its behavior 
may deviate from Henry’s law when observed under low pressure. The 
empirical equations of the Freundlich model also include nonlinear 

Fig. 8. The DFT journey and its rules are to be implemented in several fields.
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models such as the Langmuir model, which can be presented as follows: 

qe = KFC1/n
e for nonlinear models (7) 

lnqe = lnkF +
lnCe

n
for linear models (8) 

The provisions in Eqs. 7 and 8 are as follows: 

(0 <
1
n
< 1)indicates desirable, if(1

<
1
n
)indicates undesirable adsorption (9) 

and 

(
1
n
= 1)indicates irreversible adsorption (10) 

The factors of temperature and adsorption intensity affect the change 
in the variables KF and 11/n. The high temperature corresponds to a high 
KF, revealing the thermodynamic relationship between them. Mean-
while, the high intensity indicates the nonlinear weakening of 11/n, 
which points to the adsorption concentration as the cause of the phe-
nomenon [107]. In the comparison between optimization techniques to 
determine the performance of photocatalysts, there are several methods 
as shown in Table 2.

The equations associated with adsorption isotherms essentially pre-
dict the adsorbed amount as a function of concentration at constant 
temperature. Temkin, Halsey, Jovanovich, Harkins–Jura, and Liu are 
isotherm models that are of practical use for researchers. Modelling that 
describes the relationship between adsorbate molecules on an inhomo-
geneous surface is the basis of the Temkin model. The formulation that qe 
is directly proportional to RT is based on the assumption that there is a 
linear decrease in the adsorption heat with increased coverage as a result 
of the adsorbate molecules’ interaction, or vice versa. It should be noted, 
however, that this model ignores the adsorbate concentration, thus 
limiting its application to intermediate ion concentrations [117]. The 
Halsey model assumes adsorption energy on an heterogenous surface, 
where a heterogeneous surface resulting from a collection of monolayer 
adsorption capacities has a linear relationship with the amount adsor-
bed. In other words, this model describes multilayer adsorption if the 
temperature distribution is not uniform. Considering the equation 
shown in Table 1, the Jovanovich model represents modelling that con-
forms to the Langmuir assumption. This model is used for monolayer 

adsorption, and is based on the equation (eKJCe ) whereby the model will 
reach equilibrium at an elevated concentration. In terms of mechanical 
interaction, the attraction and repulsion forces between the adsorbed 
molecules can be observed in KJ as a representation of the interaction 
intensity. The Harkins–Jura model is essentially a statistical and 
non-mechanistic model that does not produce direct linear or nonlinear 
equations, as per some empirical adsorption models, and tends to be 
more of a conceptual model that describes the distribution of adsorption 
energy on a heterogeneous surface [118]. The Elovich model described by 
⎛

⎝e
qe
qm

⎞

⎠ appears to assume an exponential decrease in the adsorption rate 

with surface coverage. The adsorption phenomenon is considered to 
have slowed down because it initially has a high reaction speed and 
along with the contact time there is a deceleration that may be caused by 
the empty sites that have been filled so that the adsorbed molecules’ 
interaction starts to become limited [119]. The combination of a limited 
number of monolayer binding and adsorption sites with heterogeneous 
surface energy and non-ideal interactions between adsorbed molecules 
constitutes the Liu model, which on the basis of this statement is often 
said to be a Langmuir–Freundlich combination [120].

The kinetic adsorption model focuses its attention on how the speed 
that the adsorbate in bulk or solid form that has surface interactions 
binds to the adsorbate. Reaction kinetics are presented as reaction rates 
that are dependent on several factors including the initial adsorbate, 
temperature, and competing solutes being present, with 10− 9 s− 1 rep-
resenting the highest rate currently known. The assumption of an 
adsorption rate proportional to the available vacant sites generally oc-
curs through a chemisorption process, often referred to as the Pseudo- 
first-order model. Chemisorption leads to the formation of a strong 
chemical bond between the adsorbate and the adsorbent, where the 
adsorbent surface is considered homogeneous, meaning that all the 
active sites have identical binding energy. Meanwhile, the model that 
considers the occupied and unoccupied locations through the process of 
physisorption is called the Pseudo-second-order model. Physisorption 
perceives the adsorption rate as proportional to the product of occupied 
and unfilled active sites dominated by van der Waals forces or hydrogen 
bonding, leading to a weak reaction. In this model, the adsorbent surface 
is considered heterogeneous, and thus different active sites may have 
different binding energies. The intra-particle diffusion model is a 
description of the adsorption rate and the factors affecting it such as the 
equilibrium between the adsorbate concentration and the amount 
adsorbed. This model has a good capacity to understand adsorption ki-
netics, specifically in the case of adsorbate molecules’ diffusion within 
the adsorbent pores.

3.6. Implementation of carbon and AC for various research fields

3.6.1. Civil engineering
Carbon-based materials like carbon black (CB), carbon fiber (CF), 

and carbon nanotubes (CNTs) are promising materials for civil engi-
neering because of their high strength and durability, sustainability, 
energy efficiency, and versatility [121–123]. Khan et al. utilized CF 
reinforced polymer (CFRP) wrapping to confine reinforced concrete 
(RC) columns, leading to a notable augmentation in their load-carrying 
capacity [124]. Through comprehensive investigations, it was discov-
ered that employing CFRP wraps for column confinement was not only 
effective in enhancing the load-carrying capacity (increased by 64.75 % 
and 19.55 % compared to the control plane and RC columns, respec-
tively) but also prevented steel reinforcement yielding and concrete 
crushing in the steel core region. The utilization of CFRP is becoming 
more prevalent in the reinforcement and restoration of structural ele-
ments including columns, beams, slabs, and shear walls. Incorporating 
CFRP into these components offers engineers the opportunity to enhance 
their durability, load-bearing capacity, and seismic resistance while 

Table 2 
Determining the qe and qt through isotherm and kinetic models.

Isotherm model nonlinear linear Ref.

Temkin qe =
RT
b

ln(KTCe)
qe =

RT
b

ln(KT)+
RT
b

ln(Ce)
[108]

Halsey
lnqe =

(
1
nH

)

lnKH −

(
1
nH

)

lnCe

qe = e
lnKH − lnCe

(nH ) [109]

Jovanovich qe = qmax(1 − eKJCe ) ln(qe) = lnqmax − KJCe [110]
Harkins–Jura

qe =

(
AHJ

BHJ − logCe

)1/2 1
q2

e
=

BHJ

AHJ
−

(
1

AHJ

)

logCe [111]

Elovich qe = qmKeCee
qe
qm ln

(
qe

Ce

)

= lnKeqm −
qe

qm
[112]

Liu
qe =

qm(kliuCe)
ng

1 + (kliuCe)
ng

t
qt

=
1

k1q2
e
+

t
qe

[113]

Kinetic 
model

nonlinear linear

Pseudo-first 
order

qt = qem(1 − e− K1 t) ln(qem − q1) = ln(qem) −

k1t [114]

Pseudo-second- 
order qt =

k1tq2
em

1 + k1tqem

t
q1

=
1

k1q2
em

+
t

qem
[115]

Intra-particle 
diffusion

qt = Kint
̅̅
t

√
+ Cint Not reported

[116]
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simultaneously lowering their mass and dimensions [125].
Jung et al. [126] incorporated CNTs into ultra-high-performance 

concrete (UHPC) and examined their dispersion, electromagnetic 
shielding effectiveness, and mechanical characteristics. The conducted 
experiments demonstrated that the inclusion of CNTs enhances the 
UHPC’s mechanical properties by facilitating bridging, pore filling, and 
promoting a denser C–S–H structure. Moreover, the addition of CNTs 
significantly enhances the electrical conductivity and consequently im-
proves the Schrödinger equation up to the percolation threshold.

CB nanoparticles (CBNPs) were utilized as reinforcement in asphalt 
mixtures by Rafi et al. [127]. Experimental results have shown that the 
optimal CBNP dosage in asphalt is 10 % by bitumen weight. CBNP 
addition to asphalt binder has resulted in stiffer asphalt mixtures that 
have superior rutting resistance at elevated temperatures. Additionally, 
a significant bitumen–aggregate bond strength improvement was 
observed with the incorporation of CBNPs.

Lekkam et al. [128] reported saturated AC’s (SAC) influence on 
cementitious materials’ mechanical and rheological characteristics, 
with their study proposing a novel approach focused on the potential 
reuse of SAC as a cementitious material additive. They prepared eight 
mixtures comprising four pastes and four mortars, each with varying AC 
waste percentages (0.5 %, 1 %, 2 %, and 4 %), where a comparison was 
made with a reference mixture. Their findings indicated SAC’s effective 
utilization as an organic additive in cementitious materials with no 
compromise to the mechanical strength and fluidity, provided that the 
substitution percentage remains below 2 %.

Annamalai et al. [129] reported phenol-contaminated soil’s reme-
diation using persulfate activated by ball-milled colloidal AC (CACBM), 
finding the degradation efficiency of phenol in field-contaminated and 
spiked soils through a new, low-cost CACBM catalyst. Remarkable 
phenol degradation performance was exhibited by the CACBM/persul-
fate system in both field-contaminated and spiked soils.

3.6.2. Energy storage
Carbon-based materials, renowned for their cost-effectiveness, elec-

trical conductivity, environmental friendliness, high surface area, me-
chanical and chemical stability, and tunability, are widely utilized in 
energy storage. From graphene to AC and carbon composites, these 
materials optimize ion adsorption and electron transport in batteries and 
supercapacitors, ensuring efficient energy storage and delivery while 
offering customizable solutions to meet diverse application needs 
[130–132].

Sahoo et al. [133] detailed recent advancements in graphene-based 
nanomaterials incorporating carbides, conducting polymers, metal ox-
ides, nitrides, phosphides, and sulfides. These nanocomposite materials 
leverage the synergistic effects of graphene’s large surface area, 
enhanced conductivity, and the high pseudo-capacitance properties of 
metal oxides, nitrides, sulfides, carbides, phosphides, and conducting 
polymers. Consequently, graphene-based nanomaterials emerge as 
exceptional electrode materials for supercapacitors, and regarding cyclic 
retention, energy density, power density, and specific capacitance they 
surpass their individual components.

Jia et al. [134] successfully encapsulated hollow Co9S8 nanoparticles 
(CS) within N, S co-doped carbon nanotubes (NSCNT), forming an 
advanced electrode for supercapacitors and sodium-ion batteries (SIBs). 
The resulting CS-NSCNT− 3 electrode has exceptional capacity, rate 
capability, and reversibility. In supercapacitors, the CS-NSCNT electrode 
achieves a high specific capacitance of 1150 F/g at 1 A g− 1, coupled 
with remarkable cycling stability and rate performance. Similarly, in 
SIBs, the CS-NSCNT cathode displays an initial reversible capacity of 
475 mAh g− 1 at 0.1 A g− 1, and retains 53 % capacity at 10 A g− 1, of-
fering superior rate performance. The research addresses the future 
application requirements for high capacitance/capacity, 
high-power/energy density, and long-term stability.

Anand et al. [135] developed walnut shell-derived highly porous 
heteroatom (nitrogen and sulfur)-doped AC (NS-WAC) through KOH 

activation and subsequent post-processing treatment using thio-
acetamide. NS-WAC boasts a diverse particle size distribution (featuring 
micro-, meso-, and macro-pores) and a high specific surface, which 
impart significant benefits for supercapacitors. NS-WAC is characterized 
by electrochemical performance of great promise, with a high gravi-
metric specific capacitance of 271.4 Fg− 1 at 0.5 Ag− 1 achieved in a 3 M 
KOH aqueous electrolyte.

Jeon et al. [136] successfully improved sodium ions’ interdiffusion 
behavior and electrochemical performance in an onion-derived 
freeze-dried and KOH-AC for SIB anodes. Utilizing a facile activation 
and annealing process in combination with freeze drying and KOH 
treatment, nitrogen-doped onion-derived carbon materials (dried onion 
(DO) and freeze-dried onion (FDO)) with high specific surface areas 
were prepared. The resulting carbon materials offered superior elec-
trochemical performance as SIB anodes, with the delivery of high 
discharge reversible capacities of 140.5 mAh/g (DO) and 151.4 mAh/g 
(FDO) at a 0.05 A/g current density after 30 cycles. Moreover, the ca-
pacities reached 45 mAh/g (DO) and 66 mAh/g (FDO) at 30 A/g. 
Notably, FDO//Na3V2(PO4)3 @C full cells attained a 43.9 mAh/g 
reversible capacity with a specific energy of 91.5 Wh kg− 1 at 5 C 
following 1000 cycles, suggesting promising application for SIB energy 
storage systems.

Chaudhary et al. [137] conducted a review of porous AC materials 
derived from various forms of biomass, with AC’s biomass sources and 
electrochemical properties revealed. In the energy storage application 
domain, utilizing bioresources such as bamboo waste, banana peel, 
datura, green tea waste, lotus stems, pineapple leaves, waste tires, and 
wood as AC demonstrates considerable supercapacitor energy storage 
capabilities, with specific capacitances reported to reach up to 1400 F/g. 
Additionally, the functions of batteries and supercapacitors are high-
lighted, alongside the different energy storage roles played by each 
component.

3.6.3. Biomedical application
Adsorption and enrichment play crucial roles in various aspects of 

biomedicine, such as blood purification, breath analysis, and enriching 
specific biomolecules [138]. These processes rely on the use of adsorp-
tive materials that capture target molecules, ultimately supporting dis-
ease diagnosis and treatment [139,140]. Research heavily focuses on 
designing and creating adsorbent materials with specific microstruc-
tures and physicochemical properties tailored for desired applications 
[141]. Carbon materials stand out as attractive candidates due to their 
excellent mechanical strength, high surface area, biocompatibility, and 
ease of modification. Notably, the diverse forms of carbon (0D to 3D) 
further broaden their potential in biomedicine [142]. AC, 
biomass/polymer-derived carbon, carbon-based quantum dots, CNTs, 
and graphene and its derivatives represent commonly employed carbon 
materials [143]. Advanced fabrication techniques enable the precise 
crafting of these materials into various structures to address specific 
biomedical adsorption and enrichment requirements [144]. Carbona-
ceous materials have proved to be promising choices for adsorption or 
enrichment media in a range of biomedical applications such as breath 
analysis, blood purification, glycopeptide or phosphopeptide enrich-
ment, due to their exceptional mechanical performance, high specific 
surface area, environmental friendliness, and ability to be easily 
surface-modified [145]. Purifying patients’ blood is essential to 
removing excess toxins, pathogens, and waste products, which are vital 
for disease therapy. The use of adsorbents in hemoperfusion is an 
effective method for purifying blood. Therefore, there is a high demand 
for superior sorbent materials possessing cost-effectiveness, excellent 
hemocompatibility, a large specific area, and notable selectivity. 
Hemoperfusion is indicated for conditions such as acute drug or toxic 
poisoning, acute liver failure, chronic kidney disease, and severe hepa-
titis. Carbon-based materials offer promising sorbents for hemoperfu-
sion due to their excellent performance in various aspects. Typically, 
these materials can be combined with polymers to produce adsorbents 
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with satisfactory mechanical strength and exceptional toxin-removal 
efficacy from blood [146–148]. Graphene oxide (GO) composite bead 
adsorbents coated with cellulose acetate (CA) were developed by Tyagi 
et al., aiming to eliminate both uremic toxins and bilirubin from blood 
[149]. More specifically, the in vivo investigations validated their 
exceptional capacity to eliminate excess creatinine and uric acid. 
Furthermore, molecular dynamic simulations demonstrated that the 
CA-functionalization enhanced surface coverage and uric acid and 
creatinine binding. In order to eliminate bilirubin, Du et al. created 
mesoporous–microporous composite beads using cellulose and CNTs via 
a micelle template [150]. Remarkably, the target molecules were able to 
diffuse through the macropores, leading to a high adsorption capacity 
and quick adsorption kinetics. Heparin–mimetic biomacromolecules 
were incorporated into reduced graphene oxide rGO nanocomposite 
spheres by Song et al. [151], with the resulting rGO-based sorbent able 
to significantly lower the risks of bleeding associated with the directed 
use of anticoagulants, while avoiding blood clots from forming.

AC has emerged significantly as a versatile tool in the biomedical 
field in recent years, offering a number of benefits, not least its purifying 
effect and detoxifying properties. It purifies the body as a complement to 
a varied diet, and acts as a detoxifier in cases of drug overdose, mild 
heavy metal poisoning, or poisoning. For intestinal disorders, AC regu-
lates transit and soothes diarrhea, gastroenteritis, and constipation 
linked to intestinal fermentation. Moreover, it is effective in relieving 
digestive disorders such as heartburn, gastric reflux, aerophobia, flatu-
lence, bloating, belching, irritable bowel syndrome, and cramps due to 
the excessive consumption of fats and sugars. AC also helps lower blood 
cholesterol and triglyceride levels, and eliminates bad breath (halitosis), 
while remaining a common recommendation for resuscitation and the 
emergency treatment of acute poisoning in many countries due to its 
detoxifying properties [152]. In the case of ingesting a potentially toxic 
dose of a substance, several poison control centers recognize treatment 
with activated charcoal through the administering of a single dose to 
reduce the absorption of the toxic substance. AC is most effective when 
administered rapidly, preferably within one hour of ingestion. It is also 
being studied in the field of nephrology for its potential in the treatment 
of renal failure [153], with several scientific studies confirming its value 
as a complementary treatment for certain aspects of the management of 
chronic renal failure. For example, hyperphosphatemia, commonplace 
in end-stage renal disease, is linked to higher morbidity and mortality, 
leading to secondary hyperparathyroidism. A study conducted by Wang 
et al. evaluated the effects of activated vegetable carbon on reducing 
serum phosphorus levels in hemodialysis patients, where the results 
demonstrated that activated vegetable carbon effectively controls 
hyperphosphatemia and hyperparathyroidism in chronic renal failure 
patients treated with hemodialysis [154]. A study by Tominaga et al. 
examined AC’s efficacy in treating bacterial vaginosis and its effects on 
vaginal flora. Patients with bacterial vaginosis were allocated into two 
groups: one received intravaginal tampons containing a 10 % activated 
charcoal solution, while the other group was treated with a chloram-
phenicol vaginal ovule (100 mg). The results showed that in terms of the 
chloramphenicol-treated patients, lactobacilli disappeared in 84.3 % of 
women, while only 3.1 % of the activated charcoal-treated group 
showed this loss, with the difference of statistical significance. In addi-
tion, both treatments led to a reduction in vaginal secretions and an 
improvement in odor [155]. In regard to the use of AC in cardiovascular 
disease, several studies have confirmed its beneficial effects on lipid 
parameters, in particular its cholesterol-lowering effect. Activated 
charcoal is currently widely employed in hospitals around the world to 
treat intoxication and poisoning, whether due to drugs, medication 
overdose, food, or the ingestion of household products. It is also used in 
other medical fields such as nephrology, gastroenterology, pediatrics, 
and cardiology, and is a common pharmacological tool in veterinary 
medicine [145].

3.6.4. Electronic and sensor
A biosensor is a device that utilizes a biological sensing component 

connected to a transducer, which converts physical or chemical changes 
into measurable signals. These signals, typically electronic, correlate 
with the concentration of specific chemicals. The effectiveness of bio-
sensors is heavily reliant on the materials used in their fabrication [156]. 
Carbon-based materials such as carbon dots (CDs), CNTs, graphene 
oxide, and graphite paste are widely employed in biosensor construction 
due to their capacity for surface regeneration, cost-effectiveness, ease of 
fabrication, and low background current. The high conductivity and 
porosity of certain carbon materials render them well-suited for the 
adsorption of large molecules and electrochemical signal transduction 
[157].

Carbon’s ability to exist in various forms such as graphite, diamond, 
Q-carbon, graphene, and CNTs makes it versatile for bio detection ap-
plications [158]. Graphene has a specific surface area of 2630 m2 g− 1 

and a thermal conductivity of 5000 W m− 1 K− 1. CNTs and graphene 
exhibit high electrical conductivity, with values reaching 106–107 S/m 
for pure CNTs and 108 S/m for pure graphene. Additionally, CNTs have 
a significant surface area of approximately 1000 m2/g. Carbon-based 
biosensors can detect a wide range of environmental analytes 
including toxic vapors, neurotoxic agents, and peroxides, as well as 
drugs, proteins, and biomarkers. Researchers are thus exploring new 
methods to produce these carbon polymorphs for enhanced bio detec-
tion capabilities [159,160].

Pirsaheb et al. reported the recent applications of CD-based bio-
sensors in detecting cancer markers and imaging cancer cells. Despite 
promising performance in biomedical research, transitioning CDs from 
scientific inquiry to clinical use faces challenges, particularly the need 
for human clinical trials. Furthermore, despite considerable research on 
CDs for bioanalytical detection, there is a paucity of reports on con-
structing highly sensitive CD detection systems on solid platforms [161]. 
Fig. 9 presents the implementation of carbon and AC in various fields 
based on the selection of their structure and properties.

Arshad et al. conducted research regarding the use of graphene and 
its derivatives to develop biosensors capable of detecting cancer bio-
markers with high specificity and reproducibility, discussing various 
methods to transform graphene and its derivatives into diagnostic 
platforms applicable for both imaging and therapy. However, while 
graphene-based biosensors show immense potential for early and 
optimal cancer diagnosis, and can simultaneously detect different cancer 
biomarkers in samples, their toxicity raises health concerns. Therefore, 
further research is needed to optimize these graphene-based biosensors 
and render them suitable for real-world clinical applications [162]. The 
near-infrared emission, photostability, and sensitivity of CNTs make 
them ideal candidates for the development of optical sensors and bio 
detection applications. Williams et al. developed a sensitive and specific 
fluorescent biosensor using the optical properties of CNTs for the 
detection of the metastatic prostate cancer biomarker, urokinase plas-
minogen activator (uPA) [163]. Photoluminescent single-walled CNTs 
were modified to specifically respond to uPA by antibody conjugation, 
through which the modulation of the optical bandwidth is controlled by 
the analyte interaction. The DNA/aptamer–CNT platform yielded 
improved results for the detection of the CA125 cancer biomarker with a 
fluorescent biosensor using three-dimensional CNTs immobilized by an 
anti-CA125 antibody [164]. Therefore, further research is needed to 
optimize these carbon-based biosensors and make them suitable for 
real-world clinical application.

The conductivity of AC that changes in the presence of certain gases 
makes it a potential candidate for building sensor electrodes, whereby 
the principle of the sensor is detecting changes in conductivity after 
exposure to the target gas to be measured, in order to indicate its 
presence. AC has demonstrated its ability as a base material for 
biosensor design due to its high surface area, low cost, and sustain-
ability, with Fatoni et al. developing a glucose biosensor, as well as for 
the non-invasive determination of uric acid in saliva [165]. Even the use 
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of AC in biosensors has been explored for supercapacitors with high 
power density [166].

4. Conclusion and future direction

Carbon and AC offer enormous potential for a variety of environ-
mental applications, particularly in addressing water pollution issues, 
where synthetic and natural sources provide myriad opportunities for 
the production of sustainable and cost-effective materials. It should be 
noted that in the 1906–2016 period, many isotherm equations were 
reported, whereby the chronological evolution of isotherm models can 
be seen by following the sequence:

(1906) Freundlich [167]→ (1910) Hill [168]→ (1918) Langmuir 
[169]→ (1925) Frumkin [170]→ Fowler, Ralph Howard. Statistical 
thermodynamics. CUP Archive, (1939) → (1942) Huggins [171]→ (1960) 
Dubinin [172]→ (1966) Anderson [173]→ (1974) Fritz [174]→ (1990) 
Baudu [175]→ (1990, 2016) [176] [177]→ (1995) Toth [178]→ (2016) 
Zou [179].

The potential of AC cannot be separated from its inherent adsorption 
properties such as surface deposition, and pore filling, as well as active 
sites supported by carbonyl, carboxyl, and hydrogen bonds. Perfor-
mance improvements can be made through physio-chemical activation 
processes and utilizing RSM analysis, ANNs, isotherm models, and ki-
netic models to evaluate possible practical measures to optimize 
adsorption performance and advance applications. Highlighting the re-
sults of bibliometric analysis based on 35,245 articles has revealed 
active research efforts in countries such as China and India that are 
facing water pollution challenges, thus emphasizing the global interest 
in utilizing carbon and AC for remediation. Supported by the identified 
keyword network, it was found that ACs are predominantly used as 
adsorbents in combination with semiconductors as photocatalysts and 

further indicated specific focus areas within the research community. 
The data search process showed that Elsevier journals and environ-
mental journals dominate the field of carbon and activated carbon (AC) 
research, with China and India being the most active countries. In 
addition, collaboration between countries is also evident, indicating 
knowledge exchange and joint efforts in addressing wastewater issues 
using carbon and AC. Finally, discussion on the implementation of 
carbon with various modifications and AC with porous structures have 
been presented as multifunctional materials in a number of fields.
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